
Comparing Points-to Static Analysis
with Runtime Recorded Profiling Data

Codruţ Stancu∗† Christian Wimmer∗ Stefan Brunthaler† Per Larsen† Michael Franz†

∗Oracle Labs †University of California, Irvine
c.stancu@uci.edu christian.wimmer@oracle.com s.brunthaler@uci.edu perl@uci.edu franz@uci.edu

Abstract
We present an empirical study that sheds new light on static analysis
results precision by comparing them with runtime collected data.
Our motivation is finding additional sources of information that can
guide static analysis for increased application performance.

This is the first step in formulating an adaptive approach to static
analysis that uses dynamic information to increase results precision
of frequently executed code. The adaptive approach allows static
analysis to (i) scale to real world applications (ii) identify impor-
tant optimization opportunities. Our preliminary results show that
runtime profiling is 10% more accurate in optimizing frequently ex-
ecuted virtual calls and 73% more accurate in optimizing frequently
executed type checks.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis; D.3.4 [Programming Languages]: Processors—Compilers

General Terms Algorithms, Experimentation, Measurement

Keywords static program analysis, runtime profiling, feedback
directed optimizations, performance optimization

1. Motivation
Object-oriented languages such as Java are usually just in time (JIT)
compiled. The dynamic nature of object-oriented languages makes
ahead of time (AOT) compilation less effective. Having access
to concrete information about the application execution patterns
the JIT compiler improves performance through optimization of
frequently executed code. The motivation of our work is to make
AOT compilation for Java efficient. The first challenge in reaching
this goal is to statically determine the reachable methods and
inferring as much as possible about applications’ runtime behavior.
We rely on points-to static analysis to discover the application,
Java standard libraries, and third party libraries reachable code and
discard the rest. The precision is however limited. Prior work on
Java static analysis [16, 23, 33] shows that the analysis can quickly
become intractable for real world applications. In designing a static
analysis one must find the trade-off between analysis cost, execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPPJ ’14, September 23–26, 2014, Cracow, Poland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2926-2/14/09. . . $15.00.
http://dx.doi.org/10.1145/2647508.2647524

time and memory use, and results precision that is best suited to
their context.

Static analysis uses various information to statically model
application behavior over all possible executions. In particular,
points-to analysis uses the object allocation site correlated with
various context refinements such as call stack, object recency, heap
connectivity information, and enclosing type [16, 21]. However,
it traditionally ignores one important source: runtime information
such as method execution frequency and concrete receiver types.
When targeting performance this knowledge is an essential source
of optimization.

A static analysis unaware of dynamic code behavior tries to infer
facts with the highest precision by allocating equal resources over
the entire code space. However, it is known that programs follow the
90/10 rule, that is, 90% of the execution time is spent in only 10%
of the code. From a performance perspective the 90/10 rule suggests
that inferring precise information for 90% of the cold code only has
marginal utility. To maximize application performance an analysis
should focus on increasing the precision of frequently executed
code. Taking into account execution frequencies the analysis can
automatically find the best suited precision/cost trade-offs at a
finer granularity. An adaptive analysis approach can pick different
abstraction refinements and precision settings for different parts of
the application.

In this study we identify the differences and similarities between
static analysis and runtime profiling and discuss how they comple-
ment each other. Our system targets the Java programming language,
however, the technique can be adopted by other languages as well.
Figure 1 shows an overview of the proposed methodology. We begin
by analyzing the code using our points-to analysis implementation
for Java and extract analysis inferred facts. The analysis is purely
static, does not use any dynamic information. We execute the same
code in the Java HotSpot VM [26] and extract runtime profiling
information collected by the interpreter. Next we compare the static
analysis and runtime profiling information and interpret the results.

We extract virtual calls degree of morphism, i.e., number of re-
solved methods, and type check decidability, i.e., does the type check
always hold or fail, from both static analysis and runtime profiling.
Accurate information about virtual calls and type check receiver
types is essential in optimizing object-oriented languages. Addition-
ally we extract execution frequencies from runtime profiling. We
use these metrics to inspect the analysis precision distribution over
different execution frequency ranges and to project the impact of
the static analysis accuracy on runtime performance, focusing the
attention on frequently executed code.

The contributions of our study are as follows:

• We discuss the importance of using runtime profiling informa-
tion as an additional source of information to statically model
application execution when motivated by performance.

static
analysis

runtime
profiling

source
program

virtual calls
 - morphism
type checks
 - decidability

virtual calls
 - morphism
 - execution frequency
type checks
 - decidability
 - execution frequency

results
comparison

Figure 1. System overview.

• We present an empirical study that measures the precision of a
points-to static analysis by comparing the results with runtime
extracted profiling data.

• We find that the runtime profile is able to decide that 10%
more frequently executed virtual calls are monomorphic and
that 73% more frequently executed type checks are decidable
when comparing to static analysis results.

2. Static Analysis
Static analysis is used to infer the runtime behavior of the code
without knowledge about the input data. It abstracts the execution of
the program conservatively to cover all execution scenarios. It uses
abstract interpretation of the analyzed program statements operating
on an abstract representation of runtime data.

We focus on object-oriented languages whose features and
idioms, e.g., late function binding and encapsulation, make precise
static analysis results hard to obtain [23]. The focus of our work is
points-to analysis, a fundamental static analysis used by optimizing
compilers to precisely determine the set of objects that a statement
can access or modify at runtime. The points-to analysis is used
as a basis for various optimizations such as virtual call or type
check resolution. An efficient virtual call resolution must accurately
infer the actual types of the receiver objects and is essential for
constructing an accurate control flow graph (CFG).

The points-to analysis associates a points-to set to each reference
variable and reference field. The elements of the points-to sets are
abstractions of heap allocated objects. The analysis is modeled using
flow transfer functions between program statements. In general, type
state propagation happens at direct assignments, instance field reads
and writes, and method invocations.

The two dimensions that define the design space of static analysis
are results precision and analysis cost. Choosing a design point in
the static analysis space is equivalent to finding the trade-off between
precision and cost best suited to the context in which the analysis
results are used.

Previous work has shown that an efficient points-to analysis for
object-oriented languages like Java must be context sensitive, i.e. a
method must be analyzed separately for each invocation context. The
two main choices of context in literature are method invocation site,
called call-site sensitivity [29, 32], and receiver object abstraction,
called object-sensitivity [23].

From the introduction of object-sensitivity by Milanova et
al. [23] it has been shown that it closely models the runtime behavior
of object-oriented languages and yields a superior precision at a cost
comparable to that of call-site sensitivity [6, 18–20, 24]. In addition,
heap object abstractions can be modeled context sensitively by
tagging object abstractions with the context of the allocator method;
this is called heap sensitivity. Orthogonal to the choice of context
is the context depth at which the analysis operates. That is, how
many invocation levels are considered when grouping points-to sets
of method variables or when abstracting heap allocated objects. A
higher context depth yields more precise results but it reaches the

analysis cost

results precision

A

B

C

D

 - global analysis configuration point
A, B, C, D - local analysis configuration points

f(A) < f(B) < F(C) < f(D),
where f() is execution frequency function

∝

∝

Figure 2. Points-to analysis design space.

limits of practicability quickly. Call-site sensitivity with a depth
greater than 1 is typically considered impractical [23]. Object-
sensitivity reaches the limit of practicality quickly too, at a depth of
2 with a heap sensitivity of 1 [33].

Trading precision for cost using a fixed point in the design
space for the entire application is rigid when targeting application
performance. Ideally the static analysis would flexibly allocate
more resources (i.e., use a more accurate object abstraction or
an increased context depth) to obtain more accurate results for
frequently executed code and analyze the rest of the application
less precise (i.e., fall back to call-site sensitivity or disable heap
sensitivity) to balance cost. To make an informed decision the static
analysis requires knowledge about the runtime behavior of the code.
It needs to know what the hot spots of the application are. Hence the
design space for static analysis needs a third dimension, execution
frequency. This knowledge can be used to automatically increase
precision for frequently executed code at a cost penalty and to
estimate the impact of results precision on runtime performance.

As shown in Figure 2 the execution frequency function deter-
mines local configuration points that vary from the global config-
uration point adaptively, trading analysis cost for results precision
and vice versa. Selectively varying the context abstraction and depth
throughout the program requires the use of a demand-driven analy-
sis.

2.1 Example
Figure 4 shows an example of type check optimization based on
static analysis inferred facts. The data flow graph is an abstract
representation of the code in Figure 3. Method foo takes a parameter
of type Object and returns an object of type I. Let’s assume that
I is an interface that is implemented by two classes A and B. The

1 static I foo(Object param) {
2 Object result = param;
3 if (...) {
4 result = new A();
5 }
6 return (I) result;
7 }

Figure 3. Code example

Param(0)Alloc (A)

Phi()

Return

Param(0)Alloc (A)

Phi()

CheckCast (I)

Return

Param(0)Alloc (A)

Phi()

CheckCast (I)

Return

(a) (b) (c)

A

A

A

A

A

A

B

B

B

B

A

A

A

B

B

B

B

A

A

link method
to call sites

simplify based on
static analysis results

A

A

After data flow graph building After static analysis After graph simplification

instruction abstract object data flow

A A B

Figure 4. Static analysis data flow graph.

inputs in the data flow graph come from the object creation node
(Alloc(A)) and from the formal parameter node (Param(0)). The
control flow graph on which the data flow is built on is in static single
assignment (SSA) form [9], which means that for every variable
there is just a single point in the program where a value is assigned
to it. The type sets of the two input nodes, coming from the two
branches of a conditional statement, are merged in the Phi() node.
In SSA form Phi() functions are placed at control-flow joins to
indicate that the value of variables may come from either of the flow
paths and it creates a new point of definition for every variable that
is modified on either of the paths.

Figure 4(a) depicts the object states after data flow graph building.
The state of the node which allocates A contains an abstract object of
type A. The state of the allocation node is propagated to the Phi()
node, it passes through the CheckCast statement since the two
types are compatible and flows into the return type of foo.

When foo gets linked to a call site, Figure 4(b), the object state
of the formal parameter node Param(0) gets updated to the object
state of the actual parameter, abstract objects of type A and B in this
case. This leads to a chain of object state updates. The Phi() node
state is a union of its previous state and the newly incoming state.
Since the Phi() node state is updated it propagates the new state
further through the CheckCast to the Return node. Assuming that
no abstract objects of other types flow into the Param(0) the static
analysis infers that the CheckCast node can be removed and that
foo can return only types A and B, as shown in Figure 4(c).

A cheap but imprecise class hierarchy analysis based on the stati-
cally declared types would have failed to detect that the CheckCast
can be removed and would have inferred that foo can return any
Object. A more precise object-sensitive analysis could as well fail
to optimize this code if objects incompatible with type I flow in
Param(0) due to limitations in the maximum context depth. If foo
is a frequently executed method the analysis should allocate best
effort (e.g., use a more precise context abstraction and a higher
context depth) to optimize it. Failing to disambiguate the types that
flow into Param(0) would otherwise result in a penalty on runtime
performance.

3. Runtime Profiling
Feedback-directed optimizations are commonly used together with
dynamic compilation. The code is transformed at runtime using
recently recorded execution profiles. The profiling information can

range from method calls and backward branch execution counts to
concrete types of objects.

In general the code is initially executed using an interpreter
or baseline compiler that is instrumented for profiling. Once the
profiling information reaches maturity, i.e., enough samples have
been collected and the execution count of a call or backward branch
has reached a certain threshold, the code is compiled to an optimized
version. However, the profiling phase has a limited lifetime and the
collected information reflects only the facts recorded up until the
profile reaches maturity. Dynamic profiling can formulate optimistic
assumptions about the code based on the recorded facts, but it
cannot guarantee that those assumptions hold for the entire duration
of the execution. Thus the compiler must insert deoptimization
guards that verify the correctness of the assumptions. In the event
that the assumptions fail the guards trigger deoptimization and
recompilation. Deoptimization is done by halting the execution of
the compiled code containing the failing assumption and resuming
execution in baseline mode where the exceptional case is executed
and profiling restarted. Deoptimization requires a mechanism for
transferring the execution state from optimized compiled code to
baseline code.

Runtime feedback is especially important for object-oriented
languages. Apart from traditional compiler optimizations, efficient
compilation of object-oriented languages must use optimizations
that target specific features and idioms that come with object
orientation. Heavy use of polymorphic class hierarchies can impact
performance unless special care is taken to optimize virtual calls.

Although there are special cases of virtual calls that can be stati-
cally dispatched, i.e., calls to methods that can be unambiguously
resolved such as final methods or methods of final classes, virtual
calls are in general dynamically dispatched based on the concrete
types of receiver objects. Thus method binding is usually deferred to
runtime when the concrete types of receiver objects can be recorded.
The compiler constructs a polymorphic inline cache (PIC) that dis-
patches the call to the right callee based on the recently recorded
receiver types [14]. The compiler can decide to apply aggressive
optimizations based on the optimistic assumption that no other types
flow into the receiver. It could for example decide to inline the tar-
get of a frequently executed virtual call; inlining reduces function
call overhead and provides opportunities for other compiler opti-
mizations by increasing the context, i.e., size of continuous code.
However, the compiler cannot guarantee that the assumption always
holds so it has to insert guards that transfer the control to a runtime

Param(0)Alloc (A)

Phi()

CheckCast (I)

Return

A

A

A

(a) (b)

A

A

Param(0).type == A ?

Deopt

Param(0)Alloc (A)

Phi()

Return

A

A

A

yes no

After dynamic profiling

compile using
profiling info

After compilation

A B

A B

?

?

B ?

instruction concrete type data flow

A

Figure 5. Runtime profiling data flow graph

routine that patches the call site and potentially leads to deoptimiza-
tion. Deoptimization occurring inside inlined methods is especially
complicated since the compiler has to keep track of virtual call stack
frames in order to reconstruct the interpreter native call stack.

Despite the fact that runtime profiling has only a statistical ac-
curacy, yielding a view of the application runtime behavior that is
limited by the span of the interpretative execution phase and the
space allocated for profile metadata, it drives efficient compilation
decisions [14]. However, to find virtual and interface calls that can
be statically bound and type checks that can be statically decidable,
compilers use a simple class hierarchy analysis (CHA) [27]. Enhanc-
ing the dynamic compilation with a more precise analysis would
reduce the necessity of using guards and would enable more ag-
gressive optimizations. Furthermore, current dynamic compilation
techniques make method inlining decisions without distinguishing
the profiling meta data for different invocation sites. Using a context
sensitive dynamic profiling can lead to better inlining decisions.

3.1 Example Continued
Figure 5 reexamines the example of type check optimization, this
time based on runtime profiling. The runtime profile cannot infer
that the CheckCast node can be removed by simply inspecting the
types of the values that flow in. Although for the duration of the
profile the CheckCast may never fail, the compiler must still insert
a type check guard.

However, the runtime profile has access to concrete runtime
values. Assume that for the duration of the profiling the type of
Param(0) is always A, as in Figure 5(a). This leads to an optimiza-
tion that inserts a guard checking the exact type of Param(0) and
removes the CheckCast node, as shown in Figure 5(b).

The exact type check guard is cheaper than the full dynamic
type check that the CheckCast node would have performed. If the
assumption fails, i.e., the objects that flow into Param(0) are of
type B or a type that was not recorded during profiling, the guard
triggers deoptimization. Inferring that foo can only return objects
of type A can lead to further optimizations in foo’s caller too. For
example, if foo is inlined into its caller method, the compiler can
propagate the more precise type information within the caller.

Although the profiling information is not more accurate than
the static analysis it has access to concrete runtime objects and can
drive more aggressive optimizations. However, with the additional
knowledge offered by the static analysis the code could have been
compiled to a more optimized version. The CheckCast could have

been completely removed and no deoptimization guard would have
been necessary.

4. Implementation Details
We implemented our entire system, including the static analysis, in
Java. The core of our compilation system is the Graal compiler [25].
The static analysis phase is integrated in the compilation pipeline
and it operates on the Graal internal representation [10]. At the same
time we extended the Java HotSpot VM profiling capabilities to
extract detailed profiling information. By comparing the profiling
information with the points-to analysis results we project the impact
of the analysis precision on application performance.

4.1 Ahead-of-Time Compilation for Java
At a high level, the goal of our project is to ahead-of-time compile
Java code to machine code. This decision is mainly motivated by the
limited resources of the target machine. Our solution is to identify
methods that are reachable using static analysis, covering application
code, third party libraries, and the entire Java Development Kit
(JDK).

Our system does not support reflection and dynamic class
loading. These dynamic features cannot be supported for two
reasons. First, the resulting executable image does not contain code
to load and link Java classes, therefore all the code must be available
ahead of time. Second, in presence of dynamic class loading and
reflection the static analysis would need to make overly conservative
assumptions. These assumptions greatly increase the size of the
code and defeat our goals. There are various solutions that could
be used to address these limitations and increase the spectrum of
the supported language features. We cover those in the related work
section.

4.2 Points-to Analysis
Our implementation follows closely the rules described by Smarag-
dakis et al. [33], a state of the art specification to points-to static
analysis for object-oriented languages. Our points-to analysis imple-
mentation is context sensitive and flow insensitive. It implements a
context-sensitive heap abstraction, i.e., it distinguishes between allo-
cation sites of an object in different contexts. It is field-sensitive, i.e.,
distinguishes between different fields of an object and distinguishes
the fields among different objects. It is array sensitive in the sense
that it distinguishes between the elements points-to sets of different
array objects, however, it is array-element insensitive, it does not

consider different points to sets for each index of an array object. It
is subset-based, preserving the directionality of assignments unlike
equivalent-based analysis. It discovers the reachable world on-the-
fly using a fixed-point approach. We define the reachable world as
the call graph plus the collection of fields that are read or written.

At a macro level the analysis evolves in an iterative manner.
The first iteration starts analyzing the entry method, e.g., the main
method of the application. After the first iteration reaches a fixed-
point the analysis pauses and the newly discovered classes and their
constant pools are added to the analysis space. Then the analysis
resumes and updates the discovered universe according to the newly
discovered facts. This execution pattern evolves until the analysis
reaches a global fixed-point.

At a micro level the analysis operates on a data flow graph built
on top of the Graal intermediate representation (IR) [10]. Each IR
node has an associated abstract object state and two data dependent
nodes are connected through an object flow edge. The abstract
object state propagation is asynchronous and is implemented using
synchronization free Java tasks that can be scheduled in parallel on
all available hardware threads. The abstract objects are organized in
unique type sets, thus redundant object state propagation is easily
avoided.

We implement context sensitivity using function cloning, i.e.,
analyze each function separately for each different context. We only
use the abstract value of the receiver object as context, and not the
value of all parameters. As stated by Milanova et al. [23] this is a
good enough approximation for object-oriented languages. Creating
a new clone for every distinct receiver object abstraction avoids the
redundancy of creating a clone for each distinct call path.

The output of the analysis is summarized in data structures
similar to Graal profiling summaries for later use in subsequent
compilation stages.

4.3 Choice Of Input: Graal IR vs Raw Java Bytecode
Our static analysis implementation takes as input the internal
representation generated by the Graal compiler. Using the Graal
IR instead of the raw Java bytecode has several advantages.

First, Graal discovers early the trivially statically bindable virtual
calls, i.e., calls to final methods or to methods declared in final
classes. Additionally it can optimize type checks. For example it
removes type checks that always hold or always fail based on a
simple inspection of receiver object declared type and the condition
type. It can also fold two sequential checkcast instructions into
one that checks for the more specific type if the first one has a less
precise and compatible type. In the evaluation section we report
the trivially statically bindable calls and the removed type checks
separately and not as facts discovered by the analysis.

Second, Graal evaluates the constant objects when it parses
the bytecodes and presents those as concrete Java objects to the
analysis. Hence, the Graal IR gives a more concrete and easier to use
representation of the analyzed code than the bytecode. The bytecode
preprocessing step reduces the code complexity and enables the
static analysis to save some iterations.

4.4 Profiling Information in the Java HotSpot VM
In order to speculate on the runtime importance of the statically
inferred facts we compare those with profiling information col-
lected during the application execution. For this purpose we exploit
HotSpot VM profiling infrastructure.

The profiling information is collected by the interpreter. It
includes virtual call site receiver types and resolved methods, as
well as dynamic type checks (checkcast, instanceof, aastore) receiver
types. The aastore bytecode stores an object reference into an array
of objects verifying that the runtime type of the value is assignment-
compatible with the type of the array.

HotSpot VM uses a template based interpreter to execute byte-
codes and analyzes the code as it runs to detect the critical hot spots
in the program [17, 27]. In addition the interpreter uses assembly
level instrumentation to collect profile information: counts at method
entry and backward branches, type profiles at call sites, never null
object pointers for instanceof or checkcast bytecodes and branch
frequencies.

When a method activation counter reaches a threshold, the
method is compiled by the dynamic compiler using the profile infor-
mation. The profile information is used for aggressive optimizations.
It can drive dynamic call devirtualization, inlining decisions, check-
cast elimination. When the VM shuts down, we dump the collected
profiling information for all executed methods.

5. Evaluation
We implemented our whole-program static analysis in Java and
extracted profiling metadata from the HotSpot VM. By comparing
the two sets of results we want to answer the question: how much
does increasing the analysis accuracy matter in the real world? Or,
in other words, what would be the impact of increased static analysis
accuracy on application performance?

5.1 Experimental Setup
We carefully configure the HotSpot VM execution to increase
profiling information accuracy. We disabled tiered compilation and
enabled interpreter profiling, options -XX:-TieredCompilation
and -XX:+ProfileInterpreter, so that profiling happens only
in the interpreter, without profile update in the client compiler. We
increased the compilation threshold to extend the interpretative
execution phase (option -XX:CompileThreshold=100000). We
also increased the values of the parameters that control the size
of the collected profiles (options -XX:TypeProfileWidth=10 and
-XX:MethodProfileWidth=10). We run a HotSpot VM build that
includes the Graal extended profiling capabilities for more detailed
profiling information.

We selected a variety of Java benchmarks to show how the two
approaches compare in different scenarios. We analyzed:

• a number of DaCapo-9.12 [4] benchmarks, the largest in the
literature on context-sensitive points-to analysis: avrora, luindex,
lusearch;

• a number of SPECjvm2008 [30] benchmarks, medium sized
computational kernels: compress, mpegaudio, scimark;

• a JavaScript engine implemented in Java;
• the Jolden [7] benchmarks, a port to Java of the pointer intensive

Olden benchmarks for C [8];

We analyzed all benchmarks together with the standard Java
library and the third party libraries they depend on.

The JavaScript engine benchmark is executed in two contexts.
The first scenario is a JavaScript shell, i.e., the engine is built to load
and run any script as an input. For the runtime profile extraction we
execute it using the delta-blue benchmark. In the second scenario
the engine is built as a test framework that executes the ECMAScript
test262 [11] JavaScript conformance tests. The test framework is
built in Java, hence the analyzed and executed code includes the
engine code plus the test framework code in the second scenario.

Since most of the selected dacapo and spec benchmarks or their
respective suite harnesses use reflection we patched the code to
avoid reflection.

5.2 Methodology
We begin by analyzing the application and extracting facts about
the analyzed code. The facts that we care about are virtual call

reachable methods # dacapo spec js engine jolden
avrora luindex lusearch compress mpegaudio scimark sor deltablue js262 bh voronoi

static analysis 2286 1126 1143 33 16 25 16807 15772 41 18
dynamic profiling 596 534 316 17 10 12 1626 4061 20 10
static/dynamic 3.8x 2.1x 3.6x 1.9x 1.6x 2.1x 10.3x 3.9x 2.1x 1.8x

Table 1. Reachable methods

sites receiver types and resolved methods, and dynamic type checks
(checkcast, instanceof, aastore) receiver types.

We then run the application in HotSpot and before the VM
shutdown we iterate over the discovered call graph and extract
profiling information for the executed bytecodes.

We export the static analysis results and the runtime profiling
information in files with similar structures. Then we parse the two
resulting files for each benchmarked application and compare the
results. In this process we not only collect the number summaries,
but also detailed information about the type sets, resolved methods,
etc. The detailed information can be used by a developer to inspect
the inferred facts and interpret the results in detail.

The focus of this study is to analyze the results of the static
analysis in the context of hot spots discovered by runtime profiling.
To be on par with the runtime profiling results collected by HotSpot
VM, which are not context sensitive, we present the results of the
context insensitive analysis. Increasing the context depth would
improve analysis accuracy as shown in previous work [33], but the
comparison would be less precise.

To reduce the noise introduced by VM calls into the runtime we
do not include results for the executed JDK classes. It is not possible
to isolate the effect of VM internal calls into the runtime when
extracting the profiles. Eliminating the effect of the noise without
completely isolating the JDK classes would be possible if runtime
profiling would be context sensitive.

For both the analysis and the runtime profile we filter the results
based on the application and libraries package names:

• dacapo:avrora - avrora, org.dacapo, cck

• dacapo:luindex - luindex, org.dacapo, org.apache.lucene

• dacapo:lusearch - lusearch, org.dacapo, org.apache.lucene

• spec - spec

• jolden - jolden

• jsengine - com.engine.js

We present two sets of results. We first compare the size of the
static and dynamic discovered call graphs. Then we discuss the
projected runtime performance impact of the static analysis results,
virtual calls and type checks.

5.3 Reachable Methods
Table 1 compares the number of static analysis reachable methods
with the number of runtime profile reachable methods.

Because both the static analysis and the runtime profiling are
context insensitive the statically discovered world is a super set of
the runtime discovered world. This fact is hinted in the table by the
size of the discovered world, but our system is also able to detect
any executed methods that the static analysis would fail to discover.

The last line of the table shows the relative difference between
the number of statically and dynamically discovered methods. It is as
low as 1.6x for spec:mpegaudio benchmark and as high as 10.3x for
jsengine:deltablue benchmark. The reason for the big difference in
the jsengine:deltablue benchmark is that the static analysis has to be
conservative and discover the entire possible reachable world, while
the runtime profile is extracted from the execution of a single script

which only uses a limited subset of the JavaScript functionality. The
difference between the static and dynamic discovered worlds for
the jsengine:js262 benchmark is less, 3.9x, because the execution
of the js262 conformance tests covers more language features. The
same observation applies to the other benchmarks too, the size of
the dynamically discovered world is a function of the input data
path coverage.

5.4 Detailed Results
In this section we only show virtual call and type check data
for the methods that were discovered in both static analysis and
runtime profiling. Being flow insensitive, the static analysis reports
data for bytecodes that were never executed. We include those for
completeness. However, the static analysis is able to detect dead
code based on the precomputed values of constants or type checks,
hence we excluded the respective bytecodes from both the static and
runtime profiles.

The numbers are detailed in Table 2. The left side presents the
virtual calls number summaries while the right side presents the type
checks number summaries. The data for each benchmarks is grouped
in four execution frequency ranges: never executed, executed less
than 100 times, executed more than 100 and less than 9,000 times,
and executed more than 9,000 times.

We summarize the important data in Figure 6: frequently exe-
cuted virtual calls, Figure 7: virtual calls that are reached by the
static analysis but never executed, and Figure 8: frequently executed
type checks.

5.4.1 Virtual Calls
We correlate information from the static analysis: number of reach-
able methods at a given call site, with runtime profile information:
number of reachable methods and profiled instruction execution
count. We classify the virtual call sites by the degree of morphism.
We include numbers for for the invokevirtual and invokeinterface
bytecodes.

The first column of Table 2, tbind, in both the static and dynamic
profiles represents the trivially bindable call sites. These are the call
sites that can be devirtualized by a simple class hierarchy inspection,
i.e., the resolved method is final or the class that declares it is final.
The trivially statically bindable calls are the result of the preceding
class hierarchy analysis carried by the Graal compiler, thus we do
not count them as points-to analysis results. HotSpot VM profiling
also identifies the trivially bindable methods and does not collect
detailed receiver type and resolved method information.

The next columns, 1-m, 2-m, 3-m, and p-m classify the virtual
call data in monomorphic, bimorphic, trimorphic, and respectively
polymorphic virtual call sites. The differentiation between bimor-
phic, trimorphic, and polymorphic is important: although only the
monomorphic call sites can be actually devirtualized, the bimorphic
and trimorphic call sites enable more aggressive optimizations, e.g.,
polymorphic method inlining.

Looking at the summary of frequently executed calls, i.e., more
than 9,000 execution counts, Figure 6, it is interesting to observe
that most of the profiles are dominated by trivially bindable and
monomorphic virtual calls. The preprocessing step carried by Graal

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

av
ro
ra
	

lu
ni
de

x	
lu
se
ar
ch
	 c
om

pr
es
s	

m
pe

g	
au
di
o	

sc
im

ar
k	

so
r	

de
lta

	 b
lu
e	

js2
62
	

bh
	

vo
ro
no

i	

trivially	 bindable	 monomorphic	 bimorphic	 trimorphic	 polymorphic	

Figure 6. Frequently executed virtual calls, more than 9,000 times

is able to discover many of the optimizable calls relevant to runtime
performance without the help of the points-to analysis.

Looking at the dacapo benchmarks we observe that the static
analysis is able to discover a high percentage of the virtual call sites
as monomorphic, very close to the accuracy of the runtime profile.
Correlating this with the fact that the majority of the virtual calls are
executed less than 9,000 times, for this set of benchmarks increasing
the accuracy of the static analysis, i.e., inferring that more call sites
are monomorphic, would have a marginal impact on the performance
of the compiled code. It is also interesting to note that the number of
trivially devirtualizable call sites is an important fraction of the total
number of virtual calls for the luindex and lusearch benchmarks.
Therefore we find that the preprocessing step of identifying trivially
devirtualizable call sites is essential in reducing the complexity of
the analysis.

Next we inspect a set of medium sized computational kernels
extracted from the spec suite. The common characteristic of these
benchmarks is that they are small but computationally intensive.
Their use of object-oriented features is minimal and as a conse-
quence they do not exhibit a high number of virtual calls. Hence the
static analysis discovered facts about the virtual calls are as accurate
as those discovered by runtime profiling.

Our JavaScript engine is an interesting benchmark for the study
of pointer analysis implementations. It represents the programs

internally as an abstract syntax tree (AST) and it relies heavily on the
use of virtual call dispatch to select the correct implementation of an
operation. Interestingly the majority of the virtual calls are trivially
devirtualizable for both engine configurations, delta-blue and js262.
However, given the complexity of the analyzed class hierarchy, the
context insensitive analysis does a poor job at inferring that a number
of frequently executed virtual calls are monomorphic, almost as
much as 4 times virtual calls are counted by the static analysis as
being polymorphic compared to the runtime profile. Yet the accuracy
in discovering bimorphic and trimorphic call sites is comparable to
that of the runtime profile. Enabling context sensitivity for this set
of benchmarks would improve the accuracy of the results.

The next set of benchmarks, jolden, are a Java port of the C
language pointer intensive Olden benchmarks. As in the case of the
spec benchmarks the static analysis is able to create an accurate
image of the runtime profile. This is due to a limited amount of
polymorphism. Looking at the voronoi benchmark we note that the
majority of the virtual calls are frequently executed, the consequence
of virtual calls in long running kernels.

Previous work on static analysis classifies virtual calls in
monomorphic and polymorphic without distinguishing between
trivially devirtualizable calls. We believe that distinguishing triv-
ially devirtualizable calls is important to give a more accurate
understanding of the real impact of static analysis.

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

avrora	

lunidex	

lusearch	

compress	

mpeg	

scimark	 sor	

delta-‐blue	

js262	

bh	

voronoi	

trivially	 bindable	 monomorphic	 bimorphic	 trimorphic	 polymorphic	

Figure 7. Never executed virtual calls

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

sta0c	
dynamic	

av
ro
ra
	

lu
ni
de

x	
lu
se
ar
ch
	

m
pe

g	
au
di
o	

de
lta

	 b
lu
e	

js2
62
	

bh
	

folded	 decidable	 not	 decidable	

Figure 8. Frequently executed type checks, more than 9,000 times

5.4.2 Type Checks
The right half of Table 2 presents the numbers found for type checks,
checkcast and instanceof bytecodes. The facts inferred by the static
analysis, type sets recorded at a given type check, are correlated
with runtime profile information, type check instructions execution
count and receiver types. We divide the type checks in decidable
and not decidable according to the recorded receiver types. A type
check is decidable if it either passes or fails for all of the recorded
types. Proving that a type check instruction is decidable enables
more aggressive compiler optimizations.

Since the input of our analysis is Graal IR we present in a separate
column the type checks that are removed by the canonicalization
preprocessing step. The canonicalization step can decide to remove
type checks using a simple inspection of the type check receiver
object declared type and of the condition type. For example for an
instanceof if the receiver object declared type is a subtype of the
condition type and the receiver object cannot be null then the type
check can simply be removed. For checkcast the same rule applies
with the amendment that the receiver object can be null.

virtual calls type checks

exec #
static dynamic static dynamic

tbind 1-m 2-m 3-m p-m tbind 1-m 2-m 3-m p-m folded decid !decid decid !decid

da
ca

po av
ro

ra = 0 366 239 1 8 5 - - - - - 0 4 8 - -
<100 162 595 10 19 1 153 632 2 0 0 1 9 38 48 0
<9k 30 165 6 2 4 30 170 1 0 6 0 2 11 13 0
>9k 6 286 1 16 8 6 302 2 2 4 0 0 8 8 0

lu
in

de
x = 0 818 423 19 3 7 - - - - - 0 10 18 - -

<100 625 690 40 15 8 570 800 8 0 0 1 28 78 107 0
<9k 95 99 22 2 1 71 135 12 1 0 0 1 9 10 0
>9k 74 70 2 5 4 65 85 5 0 0 0 3 10 13 0

lu
se

ar
ch = 0 414 279 5 0 13 - - - - - 0 13 22 - -

<100 169 257 13 2 1 169 273 0 0 0 1 6 11 18 0
<9k 63 79 8 2 1 62 87 4 0 0 0 1 9 10 0
>9k 103 107 19 13 9 94 140 17 0 0 0 1 19 20 0

sp
ec co
m

pr
es

s = 0 3 3 0 0 0 - - - - - 0 0 0 - -
<100 30 20 0 0 0 30 20 0 0 0 0 0 1 1 0
<9k 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0
>9k 19 0 0 0 0 19 0 0 0 0 0 0 0 0 0

m
pe

g
au

di
o = 0 0 0 2 0 0 - - - - - 0 0 0 - -

<100 13 9 0 0 0 13 9 0 0 0 0 0 1 1 0
<9k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>9k 2 2 0 0 0 2 2 0 0 0 0 1 0 1 0

sc
im

ar
k

so
r

= 0 8 3 0 0 0 - - - - - 0 0 0 - -
<100 11 11 0 0 0 11 11 0 0 0 0 0 2 2 0
<9k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>9k 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

js
en

gi
ne de

lta
bl

ue

= 0 1663 650 34 15 165 - - - - - 70 46 668 - -
<100 1499 503 85 31 216 1488 782 42 8 14 259 59 1573 1843 48
<9k 286 132 58 13 35 284 181 30 0 29 12 30 125 96 71
>9k 223 41 37 22 161 207 164 60 19 34 10 10 52 59 13

js
26

2 = 0 3019 673 28 64 472 - - - - - 71 30 773 - -
<100 3249 1191 125 61 749 3195 1870 197 63 50 60 100 771 870 61
<9k 1614 598 100 48 479 1575 951 116 48 149 35 78 413 407 119
>9k 1533 565 124 44 371 1499 810 156 45 127 253 76 1597 1747 179

jo
ld

en

bh

= 0 7 3 0 0 0 - - - - - 0 1 0 - -
<100 29 7 1 0 0 29 8 0 0 0 0 0 0 0 0
<9k 8 2 1 0 0 8 3 0 0 0 0 1 0 1 0
>9k 53 14 5 0 0 53 15 4 0 0 0 11 1 12 0

vo
ro

no
i = 0 1 12 0 0 0 - - - - - 0 0 0 - -

<100 16 10 0 0 0 16 10 0 0 0 0 0 0 0 0
<9k 0 13 0 0 0 0 13 0 0 0 0 0 0 0 0
>9k 0 130 0 0 0 0 130 0 0 0 0 0 0 0 0

Abbreviations
tbind trivially devirtualizable virtual calls
1-m monomorphic virtual calls
2-m bimorphic virtual calls
3-m trimorphic virtual calls
p-m polymorphic virtual calls
folded type checks removed by the preprocessing step
decid type checks that are decidable
!decid type checks that are not decidable

Table 2. Static vs. Dynamic results

Figure 8 presents the distribution according to decidability of the
frequently executed type checks. Some benchmarks do not have any
frequently executed type checks, hence they are removed from the
graph. Only for the jsengine benchmarks a significant number of
frequently executed type checks are eliminated by the class hierarchy
analysis carried by Graal.

Overall we observe that the dynamic profile is more accurate
than the static analysis with respect to type checks. The number of
type check instructions that are decidable at the end of the profiling,
and that enables JIT optimizations, is higher than the number of
type checks that are guaranteed as removable by the static analysis.

For the selected dacapo benchmarks most of the type checks
have a low execution count and the preprocessing step only removes
a single type check. The spec benchmarks have few type checks too.

For the jsengine benchmarks the preprocessing removes a good
number of type checks, many of them with a high execution count.
However, the discrepancy between static and dynamic profile is
even more pronounced. The static analysis infers that only a small
number of type checks can be removed in comparison to the number
of type checks that the runtime profile finds decidable. The projected
impact of this inaccuracy is significant since most of the checkcast
have a high execution count, above 9,000.

Previous work classifies type checks in may or may not fail. Type
check static decidability is a super set of the type checks that may not

fail, including those that always fail, and enables JIT compilers to
do more aggressive optimizations. Previous work does not mention
easily removable type checks.

6. Related Work
6.1 Static Analysis
Our exploration of static points-to analysis is orthogonal to most of
the previous work on this topic and complements previous results.

Prior work by Milanova et al. [23] has shown that an accurate
points-to analysis for object-oriented languages such as Java must
be context sensitive, i.e., a method must be analyzed separately for
each calling context. A context insensitive analysis which considers
a single copy for every method for all possible invocations is
imprecise. The imprecision comes from object-oriented languages
features and programming idioms such as encapsulation, inheritance
and use of complex data structures (i.e., collections and maps).

The choice of context abstraction is also crucial for an accurate
analysis. The trivial choice for context abstraction is invocation site,
or chain of invocation sites. However, given that instance methods
work on encapsulated data using the implicit parameter this to read
or write to instance fields a good context abstraction is an abstract
representation of the receiver object [23]. A points-to static analysis
that does not distinguish the different object structures accessed
through the receiver object effectively merges the states of different
objects and any access is reflected in all other objects across the
same class. Empirical results by Smaragdakis et al. [33] show that
in practice object-sensitivity has more impact on precision than call-
site sensitivity. Since static methods do not have a receiver object, a
hybrid approach where static method’s context is based on chains of
call sites was proposed and shows good precision at a low cost [16].

To further increase precision the depth of the calling contexts
can be increased too. However, in practice a context sensitivity
of 2 is the limit for an object-sensitive analysis [33] while a call
site sensitive analysis of depth greater than 1 reaches the limits of
practicability [23].

The quality of an object-sensitivity analysis is largely determined
by its heap abstraction. Previous work by Liang et al. [21] has
explored various static heap abstractions trying to find the design
point that maximizes analysis precision. The base for all heap
abstraction refinements is object allocation site to which additional
bits of information are added.

Call stack heap abstraction adds the chain of the k most recent
call sites on the stack of the thread creating the object. This is known
as k-CFA with heap cloning [31]. Further refinements of call stack
heap abstraction use the abstraction of the allocator method receiver
object instead of the call site itself [23]. Another refinement of heap
abstraction is object recency; it adds the recency index of an object
to the allocation site to distinguish the last r objects created at an
allocation site [3]. Heap abstraction based on heap connectivity tries
to distinguish objects by their connectivity properties in the heap.
It tries to associate objects with other objects reachable through
the heap graph [28]. The impact of the various refinements of heap
allocation sites on analysis precision is however dependent on the
client that uses the analysis results. There is no single abstraction
that performs efficiently for all clients.

Type-sensitive points-to analysis [33] trades precision for analy-
sis cost to obtain better scalability by using coarser approximations
of objects as context. It makes an unconventional use of types as
context: the context types are not dynamic types of objects involved
in the analysis, but instead upper bounds on the dynamic types of
their allocator objects.

Increased precision is not always possible due to cost restrictions
or due to application complexity that can lead to analysis explosion.
To address scalability issues of points-to analysis Milanova et

al. [23] proposed a coarse grain parametrization technique: i.e.,
different context depth for call and heap sensitivity, or selecting
a subset of reference variables that should be analyzed context
sensitively (e.g., implicit parameter this and return variables). The
authors also propose using different context depths to optimize
frequently used patterns. For example allocation sites in container
classes (e.g., the array of hash entries in HashTable) could be
analyzed with increased context depth for more precise results to
avoid sharing of objects stored in different containers. Our work
proposes a more flexible, fine grained analysis sweet spot selection
based on the runtime feedback.

Smaragdakis et al. [34] addressed the analysis cost issue by
introducing a set-based preprocessing step that puts the program in
a normal form optimized for points-to analysis. The preprocessing
step computes constraints at the points-to set level that result in a
reduced analysis space by removing local variables and instructions

Java programs are distributed in a Java bytecode format. How-
ever, optimizing the Java bytecode directly is difficult due to the
fact that bytecode instructions operate directly on an operand stack,
and thus have implicit uses and definitions of stack locations. A
representation in which a statement refers explicitly to the variables
it uses is better suited for static analysis and other optimizations.
The Soot [36, 37] Java optimization framework uses Jimple [35],
a 3-address intermediate representation that has been designed to
simplify analysis and transformation of Java bytecode. Soot also
supports a static single assignment (SSA) form variation of Jimple.
Our static analysis operates on the Graal internal representation [10],
a graph-based, SSA form IR that models both control-flow and data-
flow dependencies between nodes. The input to the analysis phase
is a canonicalized IR. In the canonicalization process Graal discov-
ers and simplifies easily optimizable code patterns, e.g., trivially
statically bindable virtual calls and statically decidable type checks.

Doop [6] is a widely used static analysis framework for Java.
It implements a range of algorithms, including context insensitive,
call-site sensitive, and object-sensitive analyses. Doop expresses
the various analyses declaratively using the Datalog language.
Declarative logic programming allows for a natural expression of
static analysis rules. However, our analysis step is designed as a
phase in the compilation pipeline and since it operates on the Graal
IR we decided to implement it completely in Java. An imperative
programming language presents some challenges in dealing with
type set operations. Our internal data structures are highly optimized
and thread safe. Plus our implementation organizes abstract objects
in unique type sets, thus redundant object state propagation is easily
avoided.

6.1.1 Dynamic Features
At this stage of our project we do not support Java dynamic class
loading and reflection. Our static analysis implementation operates
under a closed world assumption: the code that is visible at compile
time must be a superset of the executed code. Dynamic loading
may load code that is not available for analysis before the program
starts. However, there are various approaches that could be used
to overcome these limitations and increase the range of supported
language features.

Bodden et al. [5] have extended the scope of the static analysis
to dynamically loaded classes by running the application before
compilation and recording the dynamically loaded classes. The
discovered classes are included in the analyzed code and the analysis
operates under the assumption that no other classes can be loaded at
runtime. Livshits et al. [22] proposed a static reflection resolution
algorithm, which approximates the target of reflective calls as
part of call graph construction, complemented by user provided
specifications for reflective calls that rely on application input. Hirzel
et al. [12, 13] presented an online version of Andersen’s points-to

analysis [2] that executes alongside the program, as an extension to
the Jikes RVM [1], an open-source Java Research Virtual Machine.
Thus the analysis has access to the new code as its loaded.

6.2 Feedback Directed Optimizations
We propose using runtime feedback to tune points-to analyses for
increased application performance. Feedback directed optimizations
are largely used in JIT compilers.

Runtime profiling gives a concrete view of the application
execution patterns as it runs enabling the compiler to apply efficient
optimizations. Hölzle et al. [14] described a dynamic optimization
technique that feeds back type information from the runtime system
to the compiler. Using the concrete types the compiler can efficiently
devirtualize and inline dynamically dispatched calls.

Feedback directed optimizations cannot however guarantee that
the assumptions based on the profiled execution hold for the entire
life span of the application. Hölzle et al. [15] described an effi-
cient dynamic deoptimization technique that can be used to roll
aggressively optimized code back to interpreter execution. The de-
optimization only affects the procedure that needs to be deoptimized;
all other code runs at full speed.

Our system exploits the runtime profiles collected by the Java
HotSpot virtual machine. The Java HotSpot VM improves perfor-
mance through optimizing frequently executed application code. It
collects runtime profiles to guide optimizations of the client (C1)
and server (C2) compilers. The Client Compiler [17] is used by
default for interactive desktop applications where low startup and
pause times are more important than peak performance. The Server
Compiler [27] is tuned for peak performance and it applies more
aggressive optimizations. The two compilers share the same runtime
environment and utilize the same profile recording system.

7. Conclusions
This paper emerged from our own experience with implementing a
static analysis phase in our compilation pipeline and discusses how
we think that the benefits of a static analysis step can be maximized.
This work is a necessary first step to reach our goal of efficiently
compiling Java ahead of time. We believe that switching from a
whole-program analysis to a demand-driven analysis that exploits
runtime profiling information is the key to achieve better runtime
performance while keeping the analysis costs under control.

We presented a comparison between points-to static analysis and
runtime profiling and identified the differences and similarities. We
hope that this study can stand as a guidance to JIT developers that
could utilize these insights for better optimizations.

Acknowledgments
Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-

D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño virtual machine. IBM Systems Journal,
39(1):211–238, 2000. .

[2] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of Copenhagen,
1994.

[3] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated
storage. In Proceedings of the International Static Analysis Symposium,
pages 221–239. Springer-Verlag, 2006. .

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
169–190. ACM Press, 2006. .

[5] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming
reflection: Aiding static analysis in the presence of reflection and
custom class loaders. In Proceedings of the International Conference
on Software Engineering, pages 241–250. ACM Press, 2011. .

[6] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 243–262. ACM Press, 2009. .

[7] B. Cahoon and K. S. McKinley. Data flow analysis for software
prefetching linked data structures in Java. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, pages 280–291. IEEE Computer Society, 2001.

[8] M. C. Carlisle and A. Rogers. Software caching and computation
migration in Olden. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 29–38.
ACM Press, 1995. .

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing Static Single Assignment form and the control
dependence graph. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, 1991. ISSN 0164-0925. .

[10] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer, and
H. Mössenböck. Graal IR: An extensible declarative intermediate
representation. In Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop, 2013.

[11] Ecma TC39. ECMAScript test262. URL http://test262.
ecmascript.org.

[12] M. Hirzel, A. Diwan, and M. Hind. Pointer analysis in the presence of
dynamic class loading. In Proceedings of the European Conference on
Object-Oriented Programming, pages 96–122. Springer-Verlag, 2004. .

[13] M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind. Fast online pointer
analysis. ACM Transactions on Programming Languages and Systems,
29(2), 2007. .

[14] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls
with run-time type feedback. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 326–336. ACM Press, 1994. .

[15] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code
with dynamic deoptimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 32–43. ACM Press, 1992. .

[16] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for points-
to analysis. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 423–434.
ACM Press, 2013. .

[17] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox. Design of the Java HotSpot client compiler for Java
6. ACM Transactions on Architecture and Code Optimization, 5(1):
7:1–7:32, 2008. .

[18] O. Lhoták. Program Analysis using Binary Decision Diagrams. PhD
thesis, McGill University, 2006.

[19] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation. ACM Trans-
actions on Software Engineering and Methodology, 18(1):1–53, 2008.
.

[20] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the impact
of context-sensitivity on Andersen’s algorithm for Java programs. In
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 6–12. ACM Press,
2005. .

http://test262.ecmascript.org
http://test262.ecmascript.org

[21] P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic evaluation of the
precision of static heap abstractions. In oopsla, pages 411–427. ACM
Press, 2010. .

[22] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for Java. In
Proceedings of the Asian Conference on Programming Languages and
Systems, pages 139–160. Springer-Verlag, 2005. .

[23] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Transactions on
Software Engineering and Methodology, 14(1):1–41, 2005. .

[24] M. Naik, A. Aiken, and J. Whaley. Effective static race detection
for Java. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 308–319.
ACM Press, 2006. .

[25] OpenJDK. Graal Project, . URL http://openjdk.java.net/
projects/graal.

[26] OpenJDK. HotSpot, . URL http://openjdk.java.net/groups/
hotspot.

[27] M. Paleczny, C. Vick, and C. Click. The Java HotSpot server compiler.
In Proceedings of the Symposium on Java Virtual Machine Research
and Technology. USENIX Association, 2001. .

[28] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In Proceedings of the ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 105–118. ACM Press,
1999. .

[29] M. Sharir and M. Pnueli. Two approaches to interprocedural data flow
analysis. Program Flow Analysis: Theory and Applications, pages
189–234, 1981.

[30] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko. Specjvm2008
performance characterization. In Proceedings of the SPEC Benchmark
Workshop on Computer Performance Evaluation and Benchmarking,
pages 17–35. Springer-Verlag, 2009. .

[31] O. Shivers. Control flow analysis in Scheme. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 164–174. ACM Press, 1988. .

[32] O. Shivers. Control-Flow Analysis of Higher-Order Languages, or
Taming Lambda. PhD thesis, School of Computer Science, Carnegie
Mellon University, 1991.

[33] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts
well: Understanding object-sensitivity. In Proceedings of the ACM
SIGPLAN Symposium on Principles of Programming Languages, pages
17–30. ACM Press, 2011. .

[34] Y. Smaragdakis, G. Balatsouras, and G. Kastrinis. Set-based pre-
processing for points-to analysis. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 253–270. ACM Press, 2013. .

[35] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying Java bytecode
for analyses and transformations, 1998.

[36] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot - a Java optimization framework. In Proceedings of the Conference
of the Centre for Advanced Studies on Collaborative Research, pages
125–135. IBM Press, 1999.

[37] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan. Optimizing Java bytecode using the Soot framework: Is
it feasible? In Proceedings of the International Conference on Compiler
Construction, pages 18–34. Springer-Verlag, 2000.

http://openjdk.java.net/projects/graal
http://openjdk.java.net/projects/graal
http://openjdk.java.net/groups/hotspot
http://openjdk.java.net/groups/hotspot

	Motivation
	Static Analysis
	Example

	Runtime Profiling
	Example Continued

	Implementation Details
	Ahead-of-Time Compilation for Java
	Points-to Analysis
	Choice Of Input: Graal IR vs Raw Java Bytecode
	Profiling Information in the Java HotSpot VM

	Evaluation
	Experimental Setup
	Methodology
	Reachable Methods
	Detailed Results
	Virtual Calls
	Type Checks

	Related Work
	Static Analysis
	Dynamic Features

	Feedback Directed Optimizations

	Conclusions

